
ISOCC 2022

Evaluation of Posit Arithmetic on Machine Learning 
based on Approximate Exponential Functions

Hyun Woo Oh, Won Sik Jeong and Seung Eun Lee*
Dept. of Electronic Engineering

Seoul National University of Science and Technology

Recent advances in semiconductor technology lead to ongoing
applications to adopt complex techniques based on neural networks.
In line with this trend, the concept of optimizing real number
arithmetic has been raised. In this paper, we evaluate the
performance of the noble number system named posit on neural
networks by analyzing the execution of approximate exponential
functions, which is fundamental to several activation functions, with
posit32 and float32. To implement the functions with posit arithmetic,
we designed the software posit library consisting of basic arithmetic
operations and conversion operations from/to C standard data types.
The result shows that posit arithmetic reduces the average relative
error rate by up to 87.12% on the exponential function.

Abstract Through the equation, the error range of the output is reduced
because, as the variable n is an integer, 2r is represented without
error on the binary system. Further, obtaining 2r can be done with
only encoding exponent value on both data formats. Thus, the error
rate of approximation on any range of numbers is minimized to the
range of [2-0.5, 20.5]. Differences between the functions originate from
approximation methods for 2r. The following equations represents
the differences between approximation methods.

[Real number representation on posit arithmetic]

We evaluated the posit arithmetic by comparing the results of the
approximate exponential functions on both posit32 and float32. The
overall result shows that when applying the same approximation
method, the relative error on exponential function using posit32 is
reduced compared to the function using float32. In the case of 5th
order polynomial, applying posit refers to a 17.49% reduced average
relative error rate. Additionally, applying posit on the standard
library function offers an 87.12% reduced error rate.

Performance Evaluation

Conclusion

Different from IEEE-754, posit offers dynamic precision by splitting
the exponent parts of the data format into two fields called regime
field and exponent field. The regime field represents variable nr,
which is encoded based on the run-length method. The first bit on
the regime field decides the polarity of the exponent value and the
length of the regime field decides the most significant part of the
exponent value. The length of the exponent field is fixed to a
configurable value called es except when the regime field is too long
to preserve the exponent field. For those situations, the exponent
field is cut off from the least significant bits. The length of the fraction
bit is decided by the length of the regime field. This attribute allows
the fraction field to represent the mantissa value through dynamic
precision, providing a higher dynamic range and higher precision on
certain number intervals.

Posit Arithmetic

In this paper, we evaluate the posit arithmetic by analyzing the
results of three approximate exponential functions with posit32 and
float32 data types. The result presents that replacing the IEEE-754 to
posit achieves higher performance but lacks the throughput because
of the lack of hardware acceleration support. We are planning to
design the hardware accelerator for posit arithmetic in the near
future.

ACKNOWLEDGMENT
This research was supported by the MSIT(Ministry of Science and ICT),
Korea, under the ITRC(Information Technology Research Center)
support program (IITP-2022-RS-2022-00156295) supervised by the
IITP(Institute for Information & Communications Technology Planning
& Evaluation) .

Exponential Approximation
The approximate exponential functions we evaluated are as follows:
fifth-order polynomial derived from Taylor’s expression, linear with
two number intervals, and exponential function for float32 on free
distributed libm (fdlibm), which is adopted on Newlib C standard
library, used for many embedded operating systems. The
approximate functions share the following equation at the starting
point to derive the output.

n-th order polynomial

Remez’ algorithm


