

Evaluation of Posit Arithmetic on Machine Learning

based on Approximate Exponential Functions

Hyun Woo Oh, Won Sik Jeong, and Seung Eun Lee*

Dept. of Electronic Engineering

Seoul National University of Science and Technology

Seoul, Korea

*seung.lee@seoultech.ac.kr

Abstract— Recent advances in semiconductor technology lead to

ongoing applications to adopt complex techniques based on

neural networks. In line with this trend, the concept of

optimizing real number arithmetic has been raised. In this

paper, we evaluate the performance of the noble number system

named posit on neural networks by analyzing the execution of

approximate exponential functions, which is fundamental to

several activation functions, with posit32 and float32. To

implement the functions with posit arithmetic, we designed the

software posit library consisting of basic arithmetic operations

and conversion operations from/to C standard data types. The

result shows that posit arithmetic reduces the average relative

error rate by up to 87.12% on the exponential function.

Keywords; posit; IEEE-754; real number arithmetic; activation

functions; exponential approximation

I. INTRODUCTION

Nowadays, real number representation and arithmetic are
fundamental in a variety of applications running on digital
systems. Fixed-point and IEEE-754 floating-point is
dominating formats to represent and calculate real numbers
for decades [1]. Most of the applications that require real
number arithmetic rely on one of those formats while fixed-
point offers more numeric accuracy with lesser dynamic range
and floating-point provides higher dynamic range at the
expense of numeric precision. However, recent advances in
semiconductor technology encourage modern applications to
adopt more complex computing techniques which rely on real
number arithmetic [2]. In consequence, the optimization issue
of real number arithmetic for higher performance with fewer
computation resources has been raised to the surface.

In line with this trend, posit, a novel number format for
real number arithmetic, is introduced in 2017. Posit provides
a higher dynamic range and higher precision on specific
number intervals compared to IEEE-754 [3]. As higher
precision refers to higher performance on accuracy-critical
applications, applying posit can be effective.

Machine learning applications based on deep neural
networks (DNN) are one of the accuracy-critical applications.
In DNN, the approximate exponential function is essential
because nonlinear activation functions such as sigmoid,
softmax, and exponential linear unit (ELU) are built on the
approximate exponential function. As these functions are

often positioned and executed on the output layer [4], error in
these functions directly affects the inference results on neural
networks. Therefore, choosing the appropriate number system
and approximate exponential to utilize the error rate and
throughput by evaluating diverse cases is necessary.

In this paper, we evaluate the performance of the posit
arithmetic in neural networks by comparing 32-bit posit
(posit32) and single-precision floating-point (float32) through
approximate exponential functions. To implement these
functions on posit, we designed the software posit library for
basic arithmetic operations including add, subtract, multiply,
and division and convert operations from/to C standard 32-bit
data types such as float, unsigned/signed integer, and double-
precision floating-point (float64) to efficiently transform from
the IEEE-754 based executions.

II. POSIT ARITHMETIC

Fig.1 shows the number representation of posit arithmetic.
Different from IEEE-754, posit offers dynamic precision by
splitting the exponent parts of the data format into two fields
called regime field and exponent field. The regime field
represents variable nr, which is encoded based on the run-
length method. The first bit on the regime field decides the
polarity of the exponent value and the length of the regime
field decides the most significant part of the exponent value.
The length of the exponent field is fixed to a configurable
value called es except when the regime field is too long to
preserve the exponent field. For those situations, the exponent
field is cut off from the least significant bits. The length of the
fraction bit is decided by the length of the regime field. This
attribute allows the fraction field to represent the mantissa
value through dynamic precision, providing a higher dynamic
range and higher precision on certain number intervals.

Figure 1. Real number representation on posit arithmetic

III. EXPONENTIAL APPROXIMATION

To compare the posit arithmetic with floating-point, at first,
we configured the posit to appropriate settings (posit32)
which provides a higher dynamic range than float32 with the
same data size as follows: bitwidth parameter to thirty-two
and es parameter to three. We set up the experimental group
composed of three respective approximate exponential
functions for either posit32 or float32. The approximate
exponential functions are as follows: fifth-order polynomial
derived from Taylor’s expression, linear with two number
intervals, and exponential function for float32 on free
distributed libm (fdlibm), which is adopted on Newlib C
standard library which is used for many embedded operating
systems. The approximate functions share the following
equation at the starting point to derive the output.

 ()

Through the equation, the error range of the output is
reduced because, as the variable n is an integer, 2r is
represented without error on the binary system. Further,
obtaining 2r on posit or floating-point can be done with only
encoding exponent value on both data formats. Thus, the error
rate of approximation on any range of numbers is minimized
to the range of [2-0.5, 20.5]. Differences between the functions
originate from approximation methods for 2r. Equation (2)
shows the nth order exponential function approximation. To
gain the 2r value, equation (3) is acquired by equation (2),
which is an equation to gain the ex value.

 ()

 ()

As each term of the polynomial, e.g., (1/3!)×ln(2)3, are
constant values, the terms are pre-calculated before runtime
and compiled to software, reducing the amount of
computation.

The exponential function on fdlibm is based on the Remez
algorithm, which offers more accurate results but requires
more computation than previous methods. The equation to
obtain 2r is expressed as follows:

 ()

 ()

IV. PERFORMANCE EVALUATION

We evaluated the posit arithmetic by comparing the results
of the approximate exponential functions on both
posit32 and float32. The control group is the result of the
exponential function with float64 input included on fdlibm.

TABLE I. BENCHMARKS RESULTS WITH EXPONENTIAL FUNCTIONS

Approximation

method

Average

relative error (%)

Average time

per one execution (ns)

posit32 float32 posit32 float32

5th order
Taylor series

7.07×10-6 8.57×10-6 473.76 35.61

Remez
Algorithm

2.58×10-7 2.00×10-6 580.15 36.26

2-interval linear 6.78 6.78 240.40 35.34

Compiled with MSVC and executed on Windows 10 running on Ryzen 2700 processor.

Table 1 presents the average relative error ratio and execution
time per one iteration of the approximate exponential
functions. The overall result shows that when applying the
same approximation method, the relative error on exponential
function using posit32 is reduced compared to the function
using float32. In the case of 5th order polynomial, applying
posit refers to a 17.49% reduced average relative error rate.
Additionally, applying posit on the standard library function
offers an 87.12% reduced error rate. However, according to
the benchmark, the average execution time on posit-based
functions has much longer than on floating-point-based
functions. These results originate from the lack of hardware
acceleration support for posit arithmetic in contrast to
floating-point. Therefore, hardware acceleration should be
preceded to adopt the posit arithmetic for a wide range of
applications.

V. CONCLUSION

In this paper, we evaluate the posit arithmetic by analyzing
the results of three approximate exponential functions with
posit32 and float32 data types. The result presents that
replacing the IEEE-754 to posit achieves higher performance
but lacks the throughput because of the lack of hardware
acceleration support. We are planning to design the hardware
accelerator for posit arithmetic in the near future.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information
Technology Research Center) support program (IITP-2022-
RS-2022-00156295) supervised by the IITP(Institute for
Information & Communications Technology Planning & Evaluation)

REFERENCES

[1] H. Saadat, H. Javaid, and S. Parameswaran, "Approximate Integer and
Floating-Point Dividers with Near-Zero Error Bias," 56th ACM/IEEE
Design Automation Conference, 2019, pp. 1-6.

[2] A. Guntoro, C. D. L. Parram F. Merchant, F. D. Dinechine, J. L.
Gustafson, M. Langhammer, R. Leupers, and S. Nambiar, "Next
Generation Arithmetic for Edge Computing," Design, Automation &
Test in Europe Conference & Exhibition, 2020, pp. 1357-1365.

[3] J. L. Gustafson and I. T. Yonemoto, “Beating Floating Point at its Own
Game: Posit Arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, 2017, pp.71–86.

[4] C. Nwankpa, W. ljomah, A. Gachagan, S. Marshall, “Activation
functions: comparison of trends in practice and research for deep
learning,” 2nd International Conference on Computational Sciences
and Technology, 2021, pp. 124–133.

