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Abstract— Recent advances in semiconductor technology lead to 

ongoing applications to adopt complex techniques based on 

neural networks. In line with this trend, the concept of 

optimizing real number arithmetic has been raised. In this 

paper, we evaluate the performance of the noble number system 

named posit on neural networks by analyzing the execution of 

approximate exponential functions, which is fundamental to 

several activation functions, with posit32 and float32. To 

implement the functions with posit arithmetic, we designed the 

software posit library consisting of basic arithmetic operations 

and conversion operations from/to C standard data types. The 

result shows that posit arithmetic reduces the average relative 

error rate by up to 87.12% on the exponential function. 
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I.  INTRODUCTION  

Nowadays, real number representation and arithmetic are 
fundamental in a variety of applications running on digital 
systems. Fixed-point and IEEE-754 floating-point is 
dominating formats to represent and calculate real numbers 
for decades [1]. Most of the applications that require real 
number arithmetic rely on one of those formats while fixed-
point offers more numeric accuracy with lesser dynamic range 
and floating-point provides higher dynamic range at the 
expense of numeric precision. However, recent advances in 
semiconductor technology encourage modern applications to 
adopt more complex computing techniques which rely on real 
number arithmetic [2]. In consequence, the optimization issue 
of real number arithmetic for higher performance with fewer 
computation resources has been raised to the surface. 

In line with this trend, posit, a novel number format for 
real number arithmetic, is introduced in 2017.  Posit provides 
a higher dynamic range and higher precision on specific 
number intervals compared to IEEE-754 [3]. As higher 
precision refers to higher performance on accuracy-critical 
applications, applying posit can be effective. 

Machine learning applications based on deep neural 
networks (DNN) are one of the accuracy-critical applications. 
In DNN, the approximate exponential function is essential 
because nonlinear activation functions such as sigmoid, 
softmax, and exponential linear unit (ELU) are built on the 
approximate exponential function. As these functions are 

often positioned and executed on the output layer [4], error in 
these functions directly affects the inference results on neural 
networks. Therefore, choosing the appropriate number system 
and approximate exponential to utilize the error rate and 
throughput by evaluating diverse cases is necessary. 

In this paper, we evaluate the performance of the posit 
arithmetic in neural networks by comparing 32-bit posit 
(posit32) and single-precision floating-point (float32) through 
approximate exponential functions. To implement these 
functions on posit, we designed the software posit library for 
basic arithmetic operations including add, subtract, multiply, 
and division and convert operations from/to C standard 32-bit 
data types such as float, unsigned/signed integer, and double-
precision floating-point (float64) to efficiently transform from 
the IEEE-754 based executions. 

II. POSIT ARITHMETIC 

Fig.1 shows the number representation of posit arithmetic. 
Different from IEEE-754, posit offers dynamic precision by 
splitting the exponent parts of the data format into two fields 
called regime field and exponent field. The regime field 
represents variable nr, which is encoded based on the run-
length method. The first bit on the regime field decides the 
polarity of the exponent value and the length of the regime 
field decides the most significant part of the exponent value. 
The length of the exponent field is fixed to a configurable 
value called es except when the regime field is too long to 
preserve the exponent field. For those situations, the exponent 
field is cut off from the least significant bits. The length of the 
fraction bit is decided by the length of the regime field. This 
attribute allows the fraction field to represent the mantissa 
value through dynamic precision, providing a higher dynamic 
range and higher precision on certain number intervals. 

 

 

Figure 1.  Real number representation on posit arithmetic 



   

III. EXPONENTIAL APPROXIMATION 

To compare the posit arithmetic with floating-point, at first, 
we configured the posit to appropriate settings (posit32) 
which provides a higher dynamic range than float32 with the 
same data size as follows: bitwidth parameter to thirty-two 
and es parameter to three. We set up the experimental group 
composed of three respective approximate exponential 
functions for either posit32 or float32. The approximate 
exponential functions are as follows: fifth-order polynomial 
derived from Taylor’s expression, linear with two number 
intervals, and exponential function for float32 on free 
distributed libm (fdlibm), which is adopted on Newlib C 
standard library which is used for many embedded operating 
systems. The approximate functions share the following 
equation at the starting point to derive the output. 

  () 

Through the equation, the error range of the output is 
reduced because, as the variable n is an integer, 2r is 
represented without error on the binary system. Further, 
obtaining 2r on posit or floating-point can be done with only 
encoding exponent value on both data formats. Thus, the error 
rate of approximation on any range of numbers is minimized 
to the range of [2-0.5, 20.5]. Differences between the functions 
originate from approximation methods for 2r. Equation (2) 
shows the nth order exponential function approximation. To 
gain the 2r value, equation (3) is acquired by equation (2), 
which is an equation to gain the ex value. 

  () 

  () 

As each term of the polynomial, e.g., (1/3!)×ln(2)3, are 
constant values, the terms are pre-calculated before runtime 
and compiled to software, reducing the amount of 
computation. 

The exponential function on fdlibm is based on the Remez 
algorithm, which offers more accurate results but requires 
more computation than previous methods. The equation to 
obtain 2r is expressed as follows: 

  () 

  () 

IV. PERFORMANCE EVALUATION 

We evaluated the posit arithmetic by comparing the results 
of the approximate exponential functions on both 
posit32 and float32. The control group is the result of the 
exponential function with float64 input included on fdlibm.  

TABLE I.  BENCHMARKS RESULTS WITH EXPONENTIAL FUNCTIONS 

Approximation 

method 

Average 

relative error (%) 

Average time  

per one execution (ns) 

posit32 float32 posit32 float32 

5th order  
Taylor series 

7.07×10-6 8.57×10-6 473.76 35.61 

Remez 
Algorithm 

2.58×10-7 2.00×10-6 580.15 36.26 

2-interval linear 6.78 6.78 240.40 35.34 

Compiled with MSVC and executed on Windows 10 running on Ryzen 2700 processor. 

 

Table 1 presents the average relative error ratio and execution 
time per one iteration of the approximate exponential 
functions. The overall result shows that when applying the 
same approximation method, the relative error on exponential 
function using posit32 is reduced compared to the function 
using float32. In the case of 5th order polynomial, applying 
posit refers to a 17.49% reduced average relative error rate. 
Additionally, applying posit on the standard library function 
offers an 87.12% reduced error rate. However, according to 
the benchmark, the average execution time on posit-based 
functions has much longer than on floating-point-based 
functions. These results originate from the lack of hardware 
acceleration support for posit arithmetic in contrast to 
floating-point. Therefore, hardware acceleration should be 
preceded to adopt the posit arithmetic for a wide range of 
applications. 

V. CONCLUSION 

In this paper, we evaluate the posit arithmetic by analyzing 
the results of three approximate exponential functions with 
posit32 and float32 data types. The result presents that 
replacing the IEEE-754 to posit achieves higher performance 
but lacks the throughput because of the lack of hardware 
acceleration support. We are planning to design the hardware 
accelerator for posit arithmetic in the near future. 
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