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Abstract—This paper presents a lightweight processor and
evaluation platform for migrating from IEEE-754 to posit arith-
metic, with an optimized posit arithmetic unit (PAU) supporting
existing floating-point instructions. The PAU features a recon-
figurable divider architecture for diverse operating conditions
and lightweight square root logic. The platform includes a
posit-optimized compiler, divider generator, JTAG environment
builder, and programmable logic controller. The experimental
results demonstrate the successful execution of legacy IEEE-754
code with a small additional workload and up to 60.09 times
the performance improvement through hardware acceleration.
Additionally, the PAU and divider consume 11.00% and 57.87%
fewer LUTs, respectively, compared to the best prior works.

Index Terms—real number arithmetic, processor core, hard-
ware acceleration, reduced instruction set computer, lightweight
embedded systems

I. INTRODUCTION

Nowadays, computation for real number arithmetic is a
widespread technique in digital applications by reason of
ongoing advances in semiconductor technology. As numerous
applications are based on real number arithmetic, choosing the
appropriate number system for applications is one of the major
points in digital systems. In general, the IEEE-754 floating-
point (FP) standard has been widely adopted for real number
operations due to the practicality and flexibility originating
from a wider dynamic range than fixed-point arithmetic since
first established in 1985. However, emerging applications that
require a higher precision and wider dynamic range prompted
the development of novel number systems [1], [2].

Posit is a number format that has been proposed as a
potential replacement for the FP [3]. Fig. 1 illustrates the
main differences between the FP and posit. The key distinction
of posit from IEEE-754 is the dynamic bit-width of the
exponent and mantissa parts, which is facilitated by the use
of a separate encoding format for the exponent field. This
architecture encodes data through the run-length method for
the regime field and raw least-significant bits for the exponent
field, enabling posit numbers to achieve a wider dynamic range
and higher precision in certain regions that are frequently used
in computation [3]. Indeed, many studies adopting posit were
held and reported the performance enhancements of adopting
posit arithmetic in a variety of applications [4]–[6].

Hardware acceleration of posit arithmetic is one of the main
topics because of the low throughput of software-only (SW-
only) implementation [7]. In lightweight embedded systems

Fig. 1. Representation architecture of both IEEE-754 and posit.

where area usage and energy consumption are major con-
cerns, optimizing the microarchitecture to minimize hardware
resource usage is a major challenge in the design process [8],
[9]. In the case of systems that adopted the FP acceleration,
the floating-point unit (FPU) takes a major share of resource
usage [10]. As a consequence, many researchers regard posit as
an appropriate replacement for the FP because posit generally
requires fewer resources, derived by such factors including
the abandonment of the extraordinary representations such as
subnormal numbers and adoption of the geometric rounding
[3], [10], [11]. However, optimizing the resources of the posit
arithmetic hardware still has complications originating from
the decoding and encoding algorithms and general arithmetic
algorithms for posit that are more complex than those for
IEEE-754 due to differences in the representation of the
exponent part and higher maximum bit-width of the mantissa
part. This attribute enforces the entire system to have a lower
operating frequency due to the increment of the critical path,
slowing down the overall performance. On the other hand,
the additional workload for porting legacy codes to the posit
hardware is one of the impediments to the prevalent diffusion
of posit arithmetic. To address this issue, preserving the former
methodology for SW development is essential. For this reason,
fostering a legacy-friendly environment by optimizing both
hardware design and the compiler should be pursued.

In this paper, we propose a lightweight processor with an
adequate platform optimized for migrating from IEEE-754 to
posit. The processor architecture is built to support the posit
arithmetic operation by utilizing the legacy FP extensions. To
provide a wide range of resource optimization for numerous
operating conditions, we designed the reconfigurable posit
arithmetic unit (PAU). Next, we constructed the integrated
platform for the development and evaluation based on the



modern system-on-chip field-programmable gate array (SoC
FPGA) environment composed of a posit-optimized GNU C
compiler (GCC), programmable logic (PL) controller, and
JTAG environment builder. We verified and evaluated the PAU
as well as the processor through the PL implementation on a
number of operating conditions and execution of the functions
on the PL utilizing the evaluation platform.

II. RELATED WORKS AND MOTIVATIONS

The works on [12] and [13] focus on adding the posit arith-
metic support running with custom instruction set extensions
(ISE), providing faster execution than previous accelerators
connected to the system bus. However, these works do not
provide compiler support for a high-level language, which
leads to a significant amount of additional workload required
for utilizing posit hardware due to the writing of the assembly
language. The work on [14] adds the 32-bit and 64-bit posit
support on RISC-V utilizing the FP extensions. Through this,
a major share of the additional workload reduces because
the compiler generates the FP instruction codes from the
FP variables and operators written in previous source codes.
However, as this work excludes compiler modification, the
variable initialization does not create the appropriate binary
representation for posit. Therefore, the additional workload to
fix the representation still exists. One of the key research that
shares a similar aspect in fostering the legacy-friendly envi-
ronment is explained in [15], which handles this issue through
ISA-compatible core integration and compiler optimization.
This work presents the reconfigurable PAU configured by
the es parameter and integrates the PAU to the RISC-V
core while providing compatibility for the FP extensions in
RISC-V specification. Despite these solutions, applying posit
to lightweight systems is still distant as the PAU design in
[15] is optimized for a complex processor running on limited
operating conditions. Meanwhile, research in [16] suggests a
method for reducing the area usage and energy consumption
by fixing the configurable parameters of the posit format
specifications, i.e., es, and unit bit-width N . The key aspects
of our work differentiate from previous works are as follows:

• Designing a reconfigurable PAU that parameterizes the in-
ternal architecture of the arithmetic unit, supporting opti-
mization for a variety of lightweight operating conditions
while reducing resource usage by fixing the configurable
parameters on the posit specifications.

• Providing the rapid evaluation platform for the proposed
processor utilizing the SoC FPGA environment, including
compiler optimization and subsidiary SW running on the
pre-fabricated processor (PS) block in the SoC FPGA.

III. PROCESSOR ARCHITECTURE

Fig. 2 presents the proposed processor architecture. To
design a processor providing posit arithmetic with swift eval-
uation and versatility while using minimal resources, the pro-
cessor architecture consists of only the essential components:
central processing unit (CPU), system bus with nested JTAG
interconnect, boot ROM with boot mode configuration register

Fig. 2. The architecture of the proposed lightweight processor

(BMCR), on-chip memory, controller for external non-volatile
memory (NVM), communication interfaces. Extendability sup-
port for additional peripheral devices, e.g., domain-specific
accelerators, is provided through the bus topology.

The CPU comprises the main core, the posit coprocessor,
and the interrupt coprocessor (CP) to handle the basic ISA,
FP extensions, and trap conditions. The JTAG interconnect
provides direct and precise access to the peripherals organizing
bus topology from the host device by passing the signals
for manipulating the system bus. This characteristic simplifies
and improves the accuracy of the evaluation process, as the
peripherals are operated and monitored cycle-accurate.

One crucial consideration for applying to the embedded
application is the independent operability without any host
device. For this reason, the processor supports two separate
boot modes called JTAG boot and NVM boot. While the
processor is in the booting state, the program in the boot ROM
firstly checks the BMCR to select the mode. As the BMCR,
similar to the other peripherals, is configured through JTAG
interconnect, changing the boot mode can be done from the
external host device. Through this, the processor can be used in
both the evaluation process and distribution-level applications.

IV. POSIT ARITHMETIC UNIT ARCHITECTURE

Fig. 3 shows the architecture of the posit coprocessor. The
coprocessor is composed of the six pipeline stages similar to
the main core: instruction fetch, decode, execute, memory 1,
memory 2, and write back. The coprocessor maintains the
pipeline logic separate from the main core except for the
instruction fetch stage, which is shared with the main core
and other coprocessors due to the in-order instruction queue.
The PAU is embedded in the execute stage and operates
through three stages: decoding, calculation, and encoding.
The temporary store registers are inserted between each stage
to reduce critical path delay. The decoding stage, which is
processed by the posit decoder, extracts the two sets of sign,
exponent, and mantissa parts from the two operands. These
extracted sets are used as input for the calculation stage.
The calculation stage contains the arithmetic logic responsible
for every operation that is present in MIPS FP extensions:
add/subtract (ADD), multiply (MUL), divide (DIV), integer
to posit conversion (I2P), square root (SQRT), absolute/negate
(ABS/NEG), posit to integer conversion (P2I), and compare
(COMP). These logics begin their calculations using the



Fig. 3. The architecture of the posit coprocessor

extracted sets simultaneously and save the output results to
temporary store registers, except for the I2P, which also
operates simultaneously but uses the raw operand inputs.
The encoding stage selects the appropriate result from the
temporary store registers and compresses the selected result to
posit representation by using the multiplexer (MUX) and the
posit encoder. As the results of the operations are not limited to
the data encoded to posit, the final calculation result is selected
by another MUX, which selects the output data from the result
of the P2I or the output from the encoder. Considering that
the required cycles for each operation differ, the multicycle
controller, not part of the stages, exists to handle operations
that are processed over multiple cycles by sending the control
signals for each logic and triggering the stall signals for the
current stage while waiting for the operation completion.

Typically, the division and the square root are regarded as
one of the most intensive operations in real number arithmetic.
Reducing the critical path delay of these operations to less
than that of the main core preserves the operating frequency.
Therefore, we focused on two major concerns to enable
flexible adoption in a wide range of systems: designing an SW-
generated scalable divider architecture reflecting the operating
frequency and developing a minimal square root architecture.

A. Decoder and Encoder

Algorithm 1 represent the decoding process of the regime
field. The posit decoder uses concatenated 2-input MUXs
to extract the exponent and mantissa from any regime and
exponent field cases in a single clock cycle. The number of
required MUXs in this architecture is derived by equations (1),
(2), and (3). The w refers to the bit-width of any data.

wexp val = ⌈log2 max(vexp)⌉+ 1 (1)

wm val = wraw data − 3− es (2)

NMUX = (wraw data − 1)× (wexp val + wm val) (3)

The encoding process is performed by the reversed execution
of the decoding process.

As our design targets lightweight systems operating at low
frequency, the maximum path delay of the concatenated MUXs
does not violate the timing constraints, which means that
the throughput performance is maximized without degrading
energy efficiency by avoiding extra stall conditions.

Algorithm 1 Decoding the regime field
Input:

Ar : Bit array storing the regime field data
N : Bit-width of the data type
es : Configured parameter for exponent calculation

Output:
regime : Decoded exponent value

1: r ← Ar[0]
2: nr ← 1
3: for (i = 1;Ar[i] == r && i < N ; i = i+ 1) do
4: nr ← nr + 1
5: end for
6: if r == 0 then
7: regime← −2es × nr

8: else
9: regime← 2es × (nr − 1)

10: end if

Fig. 4. The architecture of the divider logic

B. Division

Fig. 4 shows the divider logic architecture. The divider logic
consists of the operand registers, scalable radix-2n divider,
subtractor, and ancillary components. The calculation flow of
the division is as follows:

1) Store the mantissa values extracted by the decoder to
the operand registers.

2) Calculate the division for certain clock cycles through
the radix-2n divider and the operand registers.

3) Derive the output exponent value and mantissa value
using the subtractor and the MUX.

The radix-2n division is the algorithm that parameterizes the
number of subtractions performed in one clock period. Fig.



Fig. 5. The architecture of the proposed radix-2n divider

Fig. 6. The sequence to calculate square root

5 illustrates the architecture of the radix-2n divider. In this
architecture, the division is performed by iterating the divider
sequence for certain times decided by the wm val constant and
the n parameter. The iteration count is calculated through the
following equation.

i = ⌈wm val + 2

n
⌉ (4)

We composed the memory to temporarily store the output as
the shift register (SR) queue to eliminate the path delay for
searching the block entry to be stored.

According to the architecture, the maximum path delay
is proportionate to the number of subtractions specified by
the n parameter. Thus, the scalable radix-2n divider provides
versatility for numerous operating conditions. Furthermore, we
developed the radix-2n divider generator to provide the divider
reflecting the n parameter swiftly.

C. Square Root

The square root operation is performed by repeating the
Babylonian method twice times. The Babylonian method is
organized by basic arithmetic operations: multiply, add, and
divide, as shown in equation (5). The S refers to the input
value to acquire the square root.

xn+1 =
1

2

(
xn +

S

xn

)
(5)

This attribute eliminates the necessity of extra arithmetic logic
because the algorithm is executed by utilizing the maintained
logic. Thus, we designed only the routing logic steered by the
multicycle controller (see Fig. 6) to compose the equation (5).

Fig. 7. Compiler operation optimized for posit arithmetic

V. EVALUATION PLATFORM

We construct the evaluation platform utilizing the SoC
FPGA environment with three additional SW components:
posit-optimized compiler, JTAG environment builder, and PL
controller. The posit-optimized compiler, which is developed
by modifying the string to the binary encoder in the GCC
front-end (see Fig. 7), enables swift conversion from IEEE-
754-based operation to posit-based operation. Through this
compiler, the binary representation converted from the variable
initialization codes replaced from the FP to the posit. The
JTAG environment builder generates the driver that directly
controls the peripherals linked to the system bus with nested
JTAG interconnect (see Fig. 2), supporting accessibility from
the PS block. The PL controller, which is executed on the
Linux operating system, provides user-friendly interfaces to
manipulate the designed processor.

VI. IMPLEMENTATION & EVALUATION

A. Radix-2n Divider

We verified and evaluated the scalable radix-2n divider
architecture through register-transfer level (RTL) simulation
running on the Vivado simulator. Additionally, we conducted
FPGA synthesis through Vivado 2022.2 targeting the Xilinx
xc7z020 SoC FPGA for the entire divider logic with several
different configurations. Each divider logic was designed for
posit(N=32, es=3). Fig. 8 and 9 present the performance
of each configuration. Except for the n = 1 configuration,
the maximum frequency of the divider is approximately in-
versely proportional to the n parameter, and the throughput
performance tends to maintain similar values as expected. The
abnormality of the n = 1 configuration originates from the
other circuits because the path delay of the radix-21 divider
is already reduced enough. In the case of a relative analysis
between area usage, i.e., look-up tables (LUTs) required for
constructing the logic, and throughput performance (see Fig.
9), reducing the n parameter makes the area efficiency higher
as the required LUTs per throughput decrease except for radix-
21. These results are in line with the previous abnormality: the
radix-2n divider is relatively small to the other circuits in the
entire divider logic. The overall result shows that the designed
radix-2n divider with generation SW provides flexible division
logic for a variety of operating conditions.



Fig. 8. Maximum operating frequency and throughput on FPGA

Fig. 9. Throughput performance by area usage on FPGA

To analyze the divider logic more precisely, we synthesized
the logic with separated area-first (AF) and throughput-first
(TF) constraints using Synopsys Design Compiler and TSMC
180nm technology. Fig. 10 presents the performance analysis
for each configuration. As shown in Fig. 10 (a), the area usage
varies from 4322.35 µm2 to 69561.50 µm2 across the different
configurations. This represents a dynamic range of 16.09 and
demonstrates versatility. In the case of power and energy (see
Fig. 10 (b), and (c)), the result shows that the divider consumes
the power of less than 15.53 mW and the energy of less than
273.94 pJ for one division operation, ensuring the aptness for
lightweight systems. The maximum throughput of the divider
is 56.02 mega operations per second (MOPS) (see Fig. 10
(e). The overall result indicates that the divider architecture
is suitable for both lightweight systems and high-performance
systems due to the variation in area usage and throughput.

Table I shows the power per throughput (PPT) and energy
per throughput (EPT) of each configuration, regarded as the
breakdown for each power and energy efficiency. One concern
is that the most common configurations, n = 2 and n = 4, are
not always the most efficient in terms of power and energy.
The most energy-efficient configuration for the AF is n = 7,
while n = 2 shows the second-worst performance. Though
n = 2 or n = 4 configuration shows the best power efficiency
with the TF, embedding those circuits in lightweight systems
is not appropriate in terms of power and area. Therefore,
utilizing the scalable divider architecture to adopt the adequate
configuration with respect to the specifications, e.g., power,
energy, and throughput, enhances the overall system efficiency.

B. Processor Architecture & Evaluation Platform

We implemented the proposed processor architecture with
our evaluation platform by designing the processor written in

Fig. 10. ASIC synthesis results. (a) Area usage. (b) Maximum power con-
sumption. (c) Energy dissipation for one operation. (d) Maximum operating
frequency. (e) Throughput running on maximum frequency.

TABLE I
EFFICIENCY BREAKDOWNS ON POWER AND ENERGY

Area-first synthesis results Throughput-first synthesis results
PPT EPT PPT EPT

(µW/MOPS) (pJ/MOPS) (µW/MOPS) (pJ/MOPS)
14-2 13.99 19.94 39.34 7.03
10-3 13.02 19.55 34.95 6.55
7-4 11.29 15.81 28.21 4.92
6-5 11.91 17.93 28.09 5.28
5-6 11.95 18.12 27.10 4.99
4-7 11.24 16.05 23.89 4.10
3-10 12.91 19.61 23.39 4.37
2-14 14.01 20.64 22.66 3.77
1-28 22.15 32.07 28.37 5.00

Verilog HDL and testing the processor utilizing the platform.
Operating at 100 MHz, we selected the n = 3 configuration
for the divider to maximize performance. The DIV instruction
requires three more cycles for division as the temporary
registers exist in between the three stages (see Fig. 3).

We verified the proposed PAU and the processor with our
evaluation platform through the following processes:

1) Generate the JTAG driver through the builder.
2) Develop the PL controller utilizing the JTAG driver.
3) Build the testing SW with the posit-optimized GCC.
4) Upload the testing SW to the main memory of the

designed processor through the PL controller.
5) Check the results through the communication SW.

The testing SW executes the exponential function included
in the standard math library. According to the result, the
hardware acceleration with the posit coprocessor achieved up
to approximately 60.09 times the performance improvement
compared to the SW-only implementation.

We evaluated the throughput and area performance through
comparative analysis of latencies and FPGA synthesis results
of state-of-the-art works and our work. Every PAU presented
in the tables is for handling 32-bit data type. The work on [13],
in which DIV and SQRT operations are based on approximate



TABLE II
COMPARISONS OF THROUGHPUT PERFORMANCE OF THE POSIT

INSTRUCTIONS BETWEEN THE PREVIOUS WORKS

This work [13] [14] [15]
Required cycles for each instruction
ADD/SUB 5 3 1 6
MUL 5 2 1 6
DIV 13 2a 32 3-31b

SQRT 27 2a 32 3-30b
I2P 4 1 1 3
P2I 2 1 1 3
Others 1 1 1 1
FPGA implementation environment
Target FPGA xc7z020-1 xc7k325t-2 xc7s75t-1 xc7a100t-1
Target clock 100 MHz 50 MHz 24.5 MHzc 100 MHz
aBased on the logarithm-approximate multiplier.
bProportionate to the bit-width of the mantissa part of numerators.
cBased on the critical path indicated in the timing report.

TABLE III
COMPARISONS OF AREA USAGE BETWEEN THE PREVIOUS WORKS

This work [13] [14] [15]
LUTs FFs LUTs FFs LUTs FFs LUTs FFs

PAU∗ 2856 289 4753 255 4046 145 3209 184
DIV 174 66 413 43 1033 145 794 184
∗Only for the arithmetic logics.

logic with a maximum relative error of 11.11%, suggests
the best throughput despite the target clock being relatively
lower than our work, except for ADD and SUB (see Table
II). Concerning only the exact arithmetic, our processor has
advantages in DIV instruction as the number of required cycles
is lower when the bit-width of the mantissa part is higher,
compared to the best prior work, [15] (see Table II). In terms of
area usage, our PAU and divider consume 11.00% and 57.87%
fewer LUTs compared to the best prior works, the PAU of [15]
and the divider logic of [13], respectively, demonstrating the
compactness of our design (see Table III). Though evaluating
the performance of different works with varying specifications,
such as operating clock and ISA, is subjective, we consider
our work as a promising approach to adopting posit arithmetic
in lightweight systems due to the reduced area usage.

VII. CONCLUSION

This paper presented a lightweight processor and evaluation
platform for rapid migration from IEEE-754 to posit. The key
aspects we considered, versatility and usability, were provided
by the following studies: designing the reconfigurable PAU
focusing on the most intensive operations such as division and
square root, designing the processor architecture supporting
posit responsible for existing FP extensions, and constructing
the platform to supply the swift conversion of the previous ap-
plications and fast evaluation. The experimental results showed
that our work is suitable for lightweight systems due to the
variable operating frequency and feasibility and, moreover, the
reduced area usage compared to the previous studies. In future
work, we plan to port a variety of applications to evaluate our
designs in detail. Ultimately, we aim to fabricate the processor
into a chip to confirm feasibility and compactness.
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