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Abstract—Designing high-performance hardware sorter for
resource-constrained systems is challenging due to physical
limitations and the need to balance streaming bandwidth with
memory throughput. This paper introduces a novel, scalable
hardware sorter architecture with fully-streaming support and
an accompanying RTL generator to provide versatile, energy-
efficient hardware acceleration. Our solution employs a dual-
layer architecture consisting of a parallel one-way linear in-
sertion sorter (OLIS) for bandwidth optimization and a cyclic
bitonic merge network (CBMN) for a compact, high-throughput
implementation. Furthermore, we developed the RTL generator
written in Chisel to provide the agile implementation of the
scalable architecture. Experimental results targeting the Xilinx
XVU37P-FSVH2892-2L-E FPGA show that our design achieves
up to 126.26% increase in throughput and 68.46% decrease in
latency, with an area increment of no more than 132.94% for
LUTs, and a decrement of up to 79.84% for flip-flops, compared
to state-of-the-art streaming sorter.

Index Terms—sorting network, hardware acceleration, scalable
architecture, bitonic sort, energy-efficient computing

I. INTRODUCTION

Sorting is integral to numerous computing applications
today. The demand for quick and resource-efficient sorting has
spurred extensive research into enhancing the speed of sorting
operations while minimizing resource consumption. Hardware
acceleration has emerged as a promising avenue for achieving
high-performance, energy-efficient sorting operations [1].

Bitonic sort, with its high throughput derived from an
algorithm optimized for fully parallel streaming execution,
stands as a key method in hardware sorting [2]. However,
its practical application is hampered by significant design
challenges. The implementation demands extensive area due to
the compare-and-swap (CAS) operations and memory scaling
with O(n log2 n), resulting in a substantial resource usage [1],
[3]. Moreover, these variants require equal input and output
bandwidths, corresponding to the count of sorted elements, for
maximal throughput. This requirement leads to the need for
multiple parallel access of memory blocks, a configuration that
standard host processors cannot easily accommodate, often
causing severe communication bottlenecks and reducing the
effectiveness of expansive sorting networks. Despite emerging
advances such as high-bandwidth memory (HBM) [4] or in-
memory computing [5], [6], these limitations persist in the
bitonic variant sorter designs.

In response, numerous studies have sought to diminish area
usage while preserving the high throughput characteristics of

bitonic sort variants [3], [7]–[9]. A notable direction is the
development of parallel merge tree (PMT) variants [7]–[9],
which utilize smaller bitonic networks for the merge sorting
of pre-sorted data bundles, achieving area efficiency alongside
high throughput. Despite these advances, limitations remain,
such as the lack of fully-streaming support and the prerequisite
preprocessing of data bundles.

Conversely, linear insertion sorters, with their O(n) area and
O(1) throughput scaling, represent one of the most resource-
efficient sorter designs [10]–[12]. However, this efficiency
comes at the cost of reduced throughput for large datasets and
suboptimal performance in pipelining or parallel processing
scenarios. Still, in specific contexts, such as preprocessing for
the PMT variants, linear sorters offer considerable value [13].

This paper introduces DL-Sort, a scalable dual-layer hard-
ware sorter that synergizes the strengths of linear insertion
sorters and bitonic sorters while addressing their respective
limitations. Our approach integrates a parallel one-way linear
insertion sorter (OLIS) optimized for streaming and a cyclic
bitonic merge network (CBMN) tailored for compactness,
high throughput, and reduced latency. DL-Sort is designed
to support fully-streaming operations under certain config-
urations, providing an area-efficient and high-performance
sorting solution. We have developed an RTL generator in
Chisel [14] for flexible deployment across various settings.
The performance and efficacy of our design are confirmed
through FPGA implementations with multiple configurations.

II. SORTER MICROARCHITECTURE

A. One-way Linear Insertion Sorter

Fig. 1 depicts the OLIS architecture, which compares in-
coming data with all previously stored data in a single cycle.
The OLIS leverages a series of daisy-chained blocks, enabling
the positioning of a new entry into its correct location. Sorting
a bundle completes instantaneously as each entry is processed
in one cycle when the write enable (wen) signal is set.

The design of the compare block is illustrated in Fig. 2.
Taking current input entry and previously stored data as inputs
to the comparator, the compare block determines if the new
data should be inserted in its position, generating a comparison
result indicator (cmp result) for subsequent blocks. When the
cmp result is set by any preceding block, the entry is shifted.

The OLIS distinguishes itself from earlier linear sorter
designs through several streaming-optimized features. Each



Fig. 1: The architecture of the one-way linear insertion sorter.

Fig. 2: Compare block component design.

entry within the sorter is marked with a valid flag to signify
whether the entry is occupied. Furthermore, entries are cleared
in a single cycle by resetting these flags upon a global clear
signal, facilitating the continuous processing of data stream.

Additionally, the OLIS includes a configurable function for
incremental tag generation, particularly useful in situations
where only indexes are needed. This feature enhances the
throughput and minimizes latency during the output stage,
as it allows the transmission of multiple tags over a single
streaming bus due to their reduced bitwidth.

B. Cyclic Bitonic Merge Network

Fig. 3 illustrates the of the CAS unit design, the core com-
ponent of the CBMN. Our design enhances the previous CAS
unit by adding a validity check, allowing the prioritization of
valid entries. This enables the CBMN to process partially filled
sorting entries without reconfiguration, which is advantageous
for not only the FPGA but also the ASIC implementations.

The CBMN architecture, depicted in Fig. 4, represents an
approach to hardware generation for sorting networks. This
design notably decreases the number of CAS units required by
utilizing them in a recursive manner. By integrating MUXes at
each input and output of the CAS units, the area scales O(n)
rather than O(n log2 n).

The initial phase in configuring the CBMN includes creating
the bitonic network as presented in Fig. 4(a). This network
is transformed into separate input and output permutation
matrices (Fig. 4(b)), using a methodology referenced in [15].
These matrices are then combined using matrix transposing
and multiplication, optimizing the pathway each data element
takes through the network. The resulting combined matrix is
translated into a series of MUX configurations (Fig. 4(c)). This

Fig. 3: The compare-and-swap unit design.

Fig. 4: The overview of the cyclic bitonic merge network
generation process. (a) Network generation. (b) Permutation
matrix generation. (c) Permutation optimization. (d) Auto-
mated hardware generation.

strategy markedly diminishes the area footprint of the CBMN
by replacing additional CAS units with simpler MUXes, which
are inherently more area and power-efficient.

Fig. 4(d) showcases the finalized CBMN microarchitecture,
which comprises n/2 CAS units and n · wE input MUXes,
where wE denotes the bitwidth of an entry. The area of
MUXes, which are calculated by the MUX type and count,
scales to O(n log n), reflecting the number of merging steps
required. For instance, a merging phase consolidating data
from two sources with two sorted data into four (a 2 to 4
merge) would utilize four 2-to-1 MUXes. As MUXes require
fewer resources than CAS units, the architecture ensures
optimized resource usage.

III. PROPOSED SORTER ARCHITECTURE

The sorter is composed of two distinct sorting layers, each
configured according to the parallel streaming width (P ) and
the total element count (E) parameters, which are constrained
to be powers of two. Fig. 5 showcases the DL-Sort architecture
for configurations with E = 8 and P = 4.

The first layer consists of P OLIS units that sort (E/P ) data
entries, with each OLIS receiving data via its own streaming
bus. This arrangement enables the continuous processing of



Fig. 5: Proposed scalable dual-layer sorter architecture.

incoming data in chunks, each containing E data entries.
The OLIS units are optimized to replace the early stages
of the bitonic sort algorithm, thus achieving lower latency
and constant throughput. The additional area required for the
OLIS units is counterbalanced by a reduction in the number
of multiplexers (MUX), resulting from the fewer stages in the
CBMN. After all data are received, the layer transfers the P
sorted bundles of E/P entries each to pipeline registers and
resets the OLIS units to process subsequent data chunks.

The second layer is comprised of the E/P to E CBMN.
This layer takes in the sorted bundles from the pipeline
registers and merges them through several iterations at each
sorting step. The number of required steps (Ns) for merging
from E/P to E is calculated as follows:

Ns =
2 log2 E − log2 P + 1

2
· log2 P (1)

For a fully-streaming operation, where the system processes
input data continuously without interruption, it is attainable
when Ns ≤ E/P . This condition is met because the output
from the OLIS layer is generated every E/P cycle. In scenar-
ios where Ns > E/P and data continue to be received, the
CBMN layer cannot complete its merging operation before
the next OLIS output is ready. Nevertheless, the Ns value
generally scales as O(logE · logP ), suggesting that numerous
configurations can support fully-streaming operations, partic-
ularly when P is substantially less than E.

Finally, the CBMN layer transfers the fully sorted data to the
output registers. These data are then sequentially dispatched
using an output counter and P multiplexers, each configured
as an E/P -to-1 MUX.

IV. IMPLEMENTATION & EVALUATION

A. Implementation

The DL-Sort architecture was initially verified through
register-transfer level (RTL) simulation using Verilator version
5.009. The RTL generator, crafted in Chisel, allowed the
creation of flexible sorting architectures tailored to various
E configurations while maintaining other parameters as P =
4, wD = 32, wT = 0, where wD and wT denote the bitwidth
of the data and tag field, respectively.

B. Evaluation Methodology

The evaluation was framed as a comparative analysis against
state-of-the-art scalable sorter featuring a complete sorting
mechanism [13]. This referenced architecture, incorporating
a linear insertion sorter alongside the PMT variant named
FLiMS [8], demonstrated substantial throughput of up to 49×
compared to the cortex-A53 core on Zynq Ultrascale+ ZU3EG
device, with E = 256, P = 4 configuration. The RTL source
of [13] was obtained from the generator provided in [16].
Notably, we excluded the buffering component of the [13]
design to ensure an equitable comparison on area analysis.

The FPGA implementation results are shown in Table I.
Each result is obtained by running 512 iterations of sorting
E amount of data and is organized with both physical traits
such as look-up tables (LUTs), flip-flops (FFs), maximum
frequency (fMAX ), and power, and performances such as
latency and throughput for both functional level and actual
level. The result of the benchmark sorter is split into minimum
and maximum cases due to the lack of fully-streaming support,
showing different results reflecting the dataset composition.

C. Analysis

The performance analysis of the DL-Sort in Fig. 6 indicates
several key outcomes. In terms of area usage, the DL-Sort
exhibits the compact design for smaller E configurations (E =
8, 16). Especially on E = 32, the DL-Sort requires 28.77%
more LUTs and 48.59% less FFs while achieving the 104.84%
enhanced throughput. This is because the required cycles for
the OLIS (E/P = 8) and the CBMN (Ns = 9) layers are
similar, minimizing their idle state. This trend presents the
area efficiency, which is crucial to meet resource constraints.

In terms of latency, our sorter has better performance
compared to the previous work, showing the latency reduction
up to 68.46% (E = 8, worst case of [13]) and least 4.61%
(E = 512, best case of [13]). On average, the DL-Sort
achieved 52.52% and 30.01% reduced latency compared to the
worst case and best case of [13], respectively. These results
highlight the potential for latency-critical applications.

In terms of throughput, with higher maximum frequency
(fMAX ), our sorter achieved better throughput for most con-
ditions except E = 8 configuration. Considering the worst case
of the previous work, the DL-Sort achieves better performance
for larger E values, showing the suitability for applications de-
manding high performance and consistent sorting. The highest
throughput enhancement results from E = 256 configuration,
showing 126.26% enhancement compared to the worst case
of [13]. The average enhancements were 27.38% and 81.83%
for the best and worst cases, respectively.

In terms of power efficiency, our design shows less per-
formance for most configurations compared to the previous
work. As the E parameter increases, the power consumption
of DL-Sort also rises, surpassing that of [13]. Nevertheless,
the E = 32 configuration, also mentioned before, shows better
power efficiency as our sorter almost doubles the throughput
while consuming only 16.85% more power. This suggests that
minimizing the idle state will result in better power efficiency.



TABLE I: Overall performance breakdowns of DL-Sort and [13], implemented on XVU37P-FSVH2892-2L-E FPGA

E Sorter
Physical traits Function level performance Actual performance

LUTs FFs fMAX Power Latency (cycles) Entry/cycle Fully Latency (nS) Perf. (GB/s)
(1,303,680) (2,607,360) (MHz) (W ) Min Max Min Max Streaming Min Max Min Max

8 [13] 2,827 (0.22%) 3,959 (0.15%) 288.85 3.214 12 16 3.95 3.96 no 41.54 55.39 4.57 4.57
DL-Sort 1,134 (0.09%) 798 (0.03%) 515.20 3.269 9 9 1.99 1.99 no 17.47 17.47 4.10 4.10

16 [13] 3,211 (0.25%) 4,823 (0.18%) 267.95 3.236 16 20 2.89 3.97 no 59.71 74.64 3.10 4.26
DL-Sort 2,386 (0.18%) 1,690 (0.06%) 457.67 3.425 15 15 2.65 2.65 no 32.78 32.78 4.86 4.86

32 [13] 4,839 (0.37%) 6,555 (0.25%) 238.78 3.264 24 32 3.35 3.98 no 100.51 134.02 3.20 3.80
DL-Sort 6,231 (0.48%) 3,370 (0.13%) 412.54 3.814 25 25 3.98 3.98 no 60.60 60.60 6.56 6.56

64 [13] 7,516 (0.58%) 10,027 (0.38%) 236.74 3.332 40 56 3.64 3.99 no 168.96 236.54 3.45 3.78
DL-Sort 13,953 (1.07%) 6,532 (0.25%) 340.37 4.648 43 43 3.98 3.98 yes 126.33 126.33 5.42 5.42

128 [13] 13,430 (1.03%) 17,070 (0.65%) 198.33 3.383 72 111 2.63 3.99 no 363.02 559.66 2.09 3.17
DL-Sort 26,317 (2.02%) 13,055 (0.50%) 292.74 5.830 77 77 3.98 3.98 yes 263.03 263.03 4.66 4.66

256 [13] 24,652 (1.89%) 31,212 (1.20%) 184.91 3.495 136 223 2.05 3.99 no 735.49 1205.98 1.52 2.95
DL-Sort 53,558 (4.11%) 25,382 (0.97%) 215.84 8.028 143 143 3.98 3.98 yes 662.52 662.52 3.44 3.44

512 [13] 46,635 (3.58%) 59,801 (2.29%) 128.63 3.655 264 447 2.01 3.99 no 1913.47 3239.86 1.11 2.20
DL-Sort 108,631 (8.33%) 50,552 (1.94%) 149.57 10.105 273 273 3.98 3.98 yes 1825.28 1825.28 2.38 2.38
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Fig. 6: Comparative analysis on the DL-Sort and the baseline sorter [13].

D. Discussion
The DL-Sort architecture has demonstrated robustness and

efficiency across various configurations. The area efficiency, as
evidenced by the reduced use of LUTs and FFs, particularly in
smaller E configurations, is a testament to the architecture’s
compact design. It showcases the potential for applications
where area footprint is prioritized.

The latency improvements are significant, showing the
suitability for latency-critical applications. The reduction in
latency without an increase in power efficiency for the E = 32
is particularly noteworthy and suggests that the DL-Sort can
achieve high throughput without sacrificing power efficiency.

While the DL-Sort generally consumes more power than
the previous work across most configurations, the increase
in throughput for the E = 32, coupled with only a modest
increase in power, indicates that there are sweet spots where
the performance-to-power ratio is optimized. This balance
is crucial for sustainable, high-performance computing and
warrants further investigation into the scalability of power
efficiency across other configurations.

The throughput improvements in larger configurations po-
sition DL-Sort as a compelling solution for high-performance
applications. The architecture’s ability to maintain and even
enhance throughput as the complexity of the sorting task
increases shows promise for use in data-intensive domains.

V. CONCLUSION

We introduced DL-Sort, a scalable hardware sorter archi-
tecture designed for high-speed, efficient, and fully-streaming
sorting. Our sorter has proven to be a competitive and viable
solution, offering high-speed, efficient sorting coupled with
consistent performance. With enhanced throughput, reduced
latency, and acceptable area and power efficiency, our sorter
is an attractive alternative to traditional hardware sorters. The
scalable architecture with hardware generator makes the DL-
Sort a suitable option for a wide range of applications. The
DL-Sort architecture exemplifies a stride in hardware sorting
acceleration, adeptly meeting the evolving demands of modern
computational challenges.

In future work, we will focus on enhancing power efficiency,
seeking architectural modifications to reduce energy dissipa-
tion without diminishing performance. Additionally, the poten-
tial integration of the DL-Sort architecture into system-on-chip
platforms using various interfacing concepts will be explored,
aiming to leverage hardware sorting in a wider spectrum of
computing environments. These forthcoming endeavors will
propel our studies forward, solidifying the role as a cornerstone
in the hardware sorting acceleration optimized for resource-
constrained systems.



REFERENCES

[1] M. Zuluaga, P. Milder, and M. Püschel, “Streaming Sorting Networks,”
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