A Multimodal AI Acceleration with Dynamic
Pruning and Run-time Configuration

Hyun Woo Oh*, Hanning Chen*, Sanggeon Yun*, Yang Ni*, Behnam Khaleghif, Fei Wen*, and Mohsen Imani*
*University of California, Irvine, TQualcomm, iSamsung Semiconductor
Email: {hyunwooo, m.imani} @uci.edu

Abstract—The computational diversity of multimodal AI work-
loads—spanning vision transformers (ViTs), graph neural net-
works (GNNs), CNNs, and transformer-based NLP—poses a
fundamental challenge to embedded acceleration platforms. We
propose a fully integrated FPGA-based acceleration framework
that addresses this heterogeneity via compile-time and run-
time configurability. Our system introduces a reconfigurable
processing unit (RPU) capable of executing dense and sparse
matrix operations (DDMM, SpMM, SDDMM), a scalable top-
k pruning engine for ViTs, and a domain-specific compiler for
hardware-software co-design. The architecture supports real-
time configuration without reloading bitstreams, enabling unified
deployment across tasks. Implementations on Xilinx U50 and
Z.CU104 demonstrate up to 22.57x and 6.86x latency reductions
versus RTX 4090 and Jetson Orin Nano, respectively, validating
the design’s efficiency for real-time, resource-limited environ-
ments.

Index Terms—Graph Neural Network, Vision Transformer,
Hardware Pruning, Computer Architecture, AI Accelerator.

I. INTRODUCTION AND MOTIVATION

Multimodal Al tasks, such as vision-language reasoning and
graph-informed perception, increasingly combine disparate
model types. ViTs require high-throughput matrix operations
over many tokens; NLP tasks demand dynamic-length se-
quence processing; GNNs rely on sparse matrix computations.
While GPUs dominate Al inference, their inflexible compute
pipelines underperform for sparse and variable workloads.
FPGAs offer a reconfigurable alternative but suffer from
limitations due to the long reconfiguration time.

II. PROPOSED ARCHITECTURE

We introduce an FPGA framework designed for multimodal
Al acceleration. Key features include:

« Reconfigurable Processing Unit (RPU): A grid of task-
adaptive compute arrays capable of executing DDMM,
SDDMM, and SpMM kernels with runtime-switchable
modes (e.g., WS, OS, SIMD, RADT).

o Top-k Engine: A dual-stage sorter combining bitonic and
merge sort units enables efficient token pruning in ViTs,
with configurable & and scalable logic footprint.

o Nonlinear Units: Polynomial and piecewise approxima-
tions support GELU, ELU, and SoftMax.

o Compiler Stack: Performs layer classification, kernel
selection, RPU scheduling, and hardware configura-
tion search, supporting both static and fuzzy (runtime-
determined) layers.

Cy: Column count of the PE array Ry: Row count of the PE array

© 1by CsSIMD

=

© Normal SIMD
Z > TB

External Memory

@ Systolic Array (WS, 0S)

%

Host Interface

Inter-RPU Buffer

Host Interface

4-1ADT

(a) Top Hardware Architecture (b) Task Adaptive Reconfigurable Array

Fig. 1: The architecture of the accelerator and hardware
kernels. (a) The top architecture. (b) The run-time configurable
hardware kernels of the task adaptive reconfigurable array.

IIT1. EVALUATION

We evaluate the design on three representative workloads:
e TinyCLIP (ViT+NLP): Achieved 22.57x latency
speedup over RTX 4090, with 3.1x gain from dynamic
token pruning (DynamicViT).
o MissionGNN (ViT+GNN): Latency does not exceed
25ms even in bigger model configurations.
« MDETR (CNN+NLP): Demonstrated compatibility;
pruning support for NLP remains future work.
On the ZCU104 (low-cost FPGA), latency dropped from 30ms
(Jetson Orin Nano) to 4.37ms, showing 6.86x improvement.

I'V. CONCLUSION AND FUTURE WORK

This work introduces the first unified FPGA-based acceler-
ator for multimodal AI with runtime pruning and configurable
compute. Our results suggest strong potential for real-time Al
systems under tight resource budgets. Future work will include
weight pruning in CNNs, token pruning in NLP, and fine-
grained RPU scheduling.

REFERENCES

[1] A. Kamath et al., “MDETR: Modulated Detection for End-to-End Multi-
Modal Understanding,” ICCV, 2021.

[2] K. Wu, et al., “TinyCLIP: CLIP Distillation via Affinity Mimicking and
Weight Inheritance,” ICCV, 2023.

[3] Y. Rao et al., “DynamicViT: Efficient Vision Transformers with Dynamic
Token Sparsification,” NeurIPS, 2021.

[4] S. Yun et al., “MissionGNN,” arXiv:2406.18815, 2024.

[S] H. W. Oh, J. Park, and S. E. Lee, “DL-Sort: A Hybrid Approach to
Scalable Hardware-Accelerated Fully-Streaming Sorting,” TCAS-11, 2024.

	Introduction and Motivation
	Proposed Architecture
	Evaluation
	Conclusion and Future Work
	References

