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Why posit?

• Better dynamic range

• Higher precision for frequently-used numbers
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Why posit?

• Examples
Float32 Posit(N=32, es=3)

1 = −1 0 × 20 × 1.0000000…(2)

−583,049,812 = −1 1 × 229 × 1.000101100000010100010010101… 2

𝑛𝑟 = 4 𝑒 = 5

𝑒𝑥𝑝 = 4 − 1 ⋅ 23 + 5 = 29

𝑛𝑟 = 1 𝑒 = 0

𝑒𝑥𝑝 = 1 − 1 ⋅ 23 + 0 = 0𝑒𝑥𝑝 = 127 − 127 = 0

𝑒𝑥𝑝 = 156 − 127 = 29

2−150 = −1 0 × 2−150 × 1.0000000… 2

𝑛𝑟 = 19 𝑒 = 2

𝑒𝑥𝑝 = −19 ⋅ 23 + 2 = −150𝑒𝑥𝑝 = −∞ → 𝑣𝑎𝑙𝑢𝑒 = 0
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Challenges in applying posit

• Lack of HW acceleration
• Low throughput & energy efficiency

• Extreme slow SW-only implementation

• Requires more area for HW implementation

• No compiler support
• Requires whole new code to migrate to posit
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Related Works

• PERCIVAL (TETC ’22)
• High throughput approximate solutions (MUL, DIV)

• Innate errors (up to 11%)

• Custom instruction set extension
• Requires a whole new code

• PERC: Posit Enhanced Rocket Chip (CARRV ’20)
• FP extension compatible

• But no compiler support → Requires new code for variable initialization

• Large PAU→ low operating frequency

• PERI: Posit Enabled RISC-V Core (TACO ’21)
• FP extension compatible & Compiler support

• Low throughput on intensive operations (DIV, SQRT) 
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Related Works

• PERCIVAL (TETC ’22)
• High throughput approximate solutions (MUL, DIV)

• Innate errors (up to 11%)

• Custom instruction set extension
• Requires a whole new code

• PERC: Posit Enhanced Rocket Chip (CARRV ’20)
• FP extension compatible

• But no compiler support → Requires new code for variable initialization

• Large PAU→ low operating frequency

• PERI: Posit Enabled RISC-V Core (TACO ’21)
• FP extension compatible & Compiler support

• Low throughput on intensive operations (DIV, SQRT) 

1) Fixed PAU arch. → overheads appear by discrepancies 
(max frequency, area, …) → Scalable architecture is required 

2) Integrated solution for fast migration is required.
(compiler support, compatibility, testability)

6



Our Solutions

• Scalable architecture for DIV & SQRT
• Provide versatility for numerous conditions

• Minimize the resource requirements

float f1=1.0f
float f2=1.5f

…

gcc-
posit

gcc-
float

00:0x3F800000
04:0x3FC00000

…

00:0x40000000
04:0x42000000

…
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• Compiler optimization
• Minimize workloads for applying posit

• Evaluation platform
• Provide an expedient evaluation method



Coprocessor & PAU architecture

• Tuned for 6-stage pipelined Processor
• Posit operations using FP instructions

• Square root logic exploiting ADD and DIV
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Scalable Divider

• Posit n=32, es=3 settings
• 28-bit division is required to ensure the maximum precision
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Scalable Divider

• Radix-2n divider generator
• Key factor (n): what number of digits is calculated in one cycle.

• Flexibility for various conditions
• Area ∝ n

• Power ∝ n

• Frequency ∝ 1/n
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Square Root Logic

• Babylonian Method

• Requires division, addition, and multiplication

• Based on convergence
• Error (< 1) decreases by a square manner on each iteration.

• Affected by the first estimated value (𝑥0)

11



Square Root Logic

• Implementation
• Designed with additional multiplexers and a low-precision subtractor.

• Exploiting the existing adder and divider

• Area-efficient

• Estimate first 𝑥0 as 2𝑒𝑥𝑝≫1 × 𝑓
• Minimize the additional area overhead
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Adding Compiler Support

• GCC 
• Most of the features to generate FP instructions were already implemented

• All we had to do is to change the encoding function for real numbers
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Evaluation Platform

• Exploiting the SoC FPGA
• Linux environment (PetaLinux)

Zynq-7000 SoC

Cortex-A9

Processor

(PS)

MIPS-Posit

Processor

JTAGGPIO

UART

Timer
MIPS

Core

Posit

CP

PL

Ctrl.
GPIO

UARTEthernet

Host PC

Ethernet

gcc
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Compiled 

Binary

1. Compile the program using 
GCC.

Compiled 

Binary

3. Transmit the binary to the RAM of the 
processor to evaluate using the PL controller SW 
that generates the JTAG signals through GPIO

Compiled 

Binary

2. Send the compiled binary to the 
PS file system through the ethernet.

4. Control the processor and 
check the result through the 
UART communication

1. Compile the program using 
GCC.

2. Send the compiled binary to the 
PS file system through the ethernet.

3. Transmit the binary to the RAM of the 
processor to evaluate using the PL controller SW 
that generates the JTAG signals through GPIO



Evaluation – Scalable Divider (FPGA)

• Frequency & Throughput
• Varying frequency

• Dynamic range: 11.92

• Similar throughput
• Dynamic range:   1.75

• Area (LUTs)
• LUTs ∝ n

• LUTs per throughput ∝ 1/n
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Evaluation – Scalable Divider (ASIC)

• Area

• Power & Energy
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▪ AF: 4322.35 ~ 25016.50 um2

▪ TF: 8563.48 ~ 69561.50 μm2

▪ Dynamic range: 16.09

▪ Power < 15.53 mW

▪ Energy < 273.94 pJ

▪ Throughput
▪ AF: 4.68 ~ 6.67 MOPS

▪ TF: 37.29 ~ 56.02 MOPS

▪ Dynamic range: 11.97 / 1.43(AF) / 1.50 (TF) 

▪ Frequency
▪ AF: 14.04 ~ 193.42 MHz

▪ TF: 111.86 ~ 1587.30 MHz

▪ Dynamic range: 113.08

• Frequency & Throughput

▪ Best configurations
▪ AF: n=7 (energy) / n=4 (power)

▪ TF: n=2 (both)

• Power & Energy per Throughput



Evaluation – Processor

• Throughput
• Best average throughput in exact DIV

• Affordable performance
• Highest operating frequency (= PERI [15])

• Area
• PAU: 11.00% reduced LUTs

• Divider: 57.47% reduced LUTs
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PERCIVAL PERC PERI

PERCIVAL PERC PERI

<<

Baseline
(our work)



Evaluation – HW Acceleration

• Comparison with SW-only implementation
• expf (fdlibm)

• Ported using SW posit library

• Best case: 768 iteration
• HW acceleration: 174,360 cycles

• SW implementation: 10,477,848 cycles

HW posit

SW posit
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Up to 60.09x performance improvement



Conclusion

1) RF2P provides flexible, area-efficient posit HW acceleration using a scalable 
divider generator and square root logic.

2) Compiler optimization enables porting the SW from FP with only a few additional 
workloads.

3) The Evaluation platform provides a practical method to swiftly test the posit 
arithmetic.

4) Our processor can achieve up to 60.09x performance compared to SW, and the 
PAU requires an 11% lower area than state-of-the-art processors in performance-
aware settings for 100 MHz operating frequency
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Q&A
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Thank You!
ohhyunwoo@seoultech.ac.kr
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