
RF2P: A Lightweight RISC Processor
Optimized for Rapid Migration from IEEE-754 to Posit

Hyun Woo Oh, Seongmo An, Won Sik Jeong, Seung Eun Lee

Seoul National University of Science and Technology

Seoul, Republic of Korea

Why posit?

• Better dynamic range

• Higher precision for frequently-used numbers

2

Why posit?

• Examples
Float32 Posit(N=32, es=3)

1 = −1 0 × 20 × 1.0000000…(2)

−583,049,812 = −1 1 × 229 × 1.000101100000010100010010101… 2

𝑛𝑟 = 4 𝑒 = 5

𝑒𝑥𝑝 = 4 − 1 ⋅ 23 + 5 = 29

𝑛𝑟 = 1 𝑒 = 0

𝑒𝑥𝑝 = 1 − 1 ⋅ 23 + 0 = 0𝑒𝑥𝑝 = 127 − 127 = 0

𝑒𝑥𝑝 = 156 − 127 = 29

2−150 = −1 0 × 2−150 × 1.0000000… 2

𝑛𝑟 = 19 𝑒 = 2

𝑒𝑥𝑝 = −19 ⋅ 23 + 2 = −150𝑒𝑥𝑝 = −∞ → 𝑣𝑎𝑙𝑢𝑒 = 0

3

Challenges in applying posit

• Lack of HW acceleration
• Low throughput & energy efficiency

• Extreme slow SW-only implementation

• Requires more area for HW implementation

• No compiler support
• Requires whole new code to migrate to posit

4

Related Works

• PERCIVAL (TETC ’22)
• High throughput approximate solutions (MUL, DIV)

• Innate errors (up to 11%)

• Custom instruction set extension
• Requires a whole new code

• PERC: Posit Enhanced Rocket Chip (CARRV ’20)
• FP extension compatible

• But no compiler support → Requires new code for variable initialization

• Large PAU→ low operating frequency

• PERI: Posit Enabled RISC-V Core (TACO ’21)
• FP extension compatible & Compiler support

• Low throughput on intensive operations (DIV, SQRT)

5

Related Works

• PERCIVAL (TETC ’22)
• High throughput approximate solutions (MUL, DIV)

• Innate errors (up to 11%)

• Custom instruction set extension
• Requires a whole new code

• PERC: Posit Enhanced Rocket Chip (CARRV ’20)
• FP extension compatible

• But no compiler support → Requires new code for variable initialization

• Large PAU→ low operating frequency

• PERI: Posit Enabled RISC-V Core (TACO ’21)
• FP extension compatible & Compiler support

• Low throughput on intensive operations (DIV, SQRT)

1) Fixed PAU arch. → overheads appear by discrepancies
(max frequency, area, …) → Scalable architecture is required

2) Integrated solution for fast migration is required.
(compiler support, compatibility, testability)

6

Our Solutions

• Scalable architecture for DIV & SQRT
• Provide versatility for numerous conditions

• Minimize the resource requirements

float f1=1.0f
float f2=1.5f

…

gcc-
posit

gcc-
float

00:0x3F800000
04:0x3FC00000

…

00:0x40000000
04:0x42000000

…

7

• Compiler optimization
• Minimize workloads for applying posit

• Evaluation platform
• Provide an expedient evaluation method

Coprocessor & PAU architecture

• Tuned for 6-stage pipelined Processor
• Posit operations using FP instructions

• Square root logic exploiting ADD and DIV

8

Scalable Divider

• Posit n=32, es=3 settings
• 28-bit division is required to ensure the maximum precision

9

Scalable Divider

• Radix-2n divider generator
• Key factor (n): what number of digits is calculated in one cycle.

• Flexibility for various conditions
• Area ∝ n

• Power ∝ n

• Frequency ∝ 1/n

10

Square Root Logic

• Babylonian Method

• Requires division, addition, and multiplication

• Based on convergence
• Error (< 1) decreases by a square manner on each iteration.

• Affected by the first estimated value (𝑥0)

11

Square Root Logic

• Implementation
• Designed with additional multiplexers and a low-precision subtractor.

• Exploiting the existing adder and divider

• Area-efficient

• Estimate first 𝑥0 as 2𝑒𝑥𝑝≫1 × 𝑓
• Minimize the additional area overhead

12

Adding Compiler Support

• GCC
• Most of the features to generate FP instructions were already implemented

• All we had to do is to change the encoding function for real numbers

13

Evaluation Platform

• Exploiting the SoC FPGA
• Linux environment (PetaLinux)

Zynq-7000 SoC

Cortex-A9

Processor

(PS)

MIPS-Posit

Processor

JTAGGPIO

UART

Timer
MIPS

Core

Posit

CP

PL

Ctrl.
GPIO

UARTEthernet

Host PC

Ethernet

gcc

14

Compiled

Binary

1. Compile the program using
GCC.

Compiled

Binary

3. Transmit the binary to the RAM of the
processor to evaluate using the PL controller SW
that generates the JTAG signals through GPIO

Compiled

Binary

2. Send the compiled binary to the
PS file system through the ethernet.

4. Control the processor and
check the result through the
UART communication

1. Compile the program using
GCC.

2. Send the compiled binary to the
PS file system through the ethernet.

3. Transmit the binary to the RAM of the
processor to evaluate using the PL controller SW
that generates the JTAG signals through GPIO

Evaluation – Scalable Divider (FPGA)

• Frequency & Throughput
• Varying frequency

• Dynamic range: 11.92

• Similar throughput
• Dynamic range: 1.75

• Area (LUTs)
• LUTs ∝ n

• LUTs per throughput ∝ 1/n

15

Evaluation – Scalable Divider (ASIC)

• Area

• Power & Energy

16

▪ AF: 4322.35 ~ 25016.50 um2

▪ TF: 8563.48 ~ 69561.50 μm2

▪ Dynamic range: 16.09

▪ Power < 15.53 mW

▪ Energy < 273.94 pJ

▪ Throughput
▪ AF: 4.68 ~ 6.67 MOPS

▪ TF: 37.29 ~ 56.02 MOPS

▪ Dynamic range: 11.97 / 1.43(AF) / 1.50 (TF)

▪ Frequency
▪ AF: 14.04 ~ 193.42 MHz

▪ TF: 111.86 ~ 1587.30 MHz

▪ Dynamic range: 113.08

• Frequency & Throughput

▪ Best configurations
▪ AF: n=7 (energy) / n=4 (power)

▪ TF: n=2 (both)

• Power & Energy per Throughput

Evaluation – Processor

• Throughput
• Best average throughput in exact DIV

• Affordable performance
• Highest operating frequency (= PERI [15])

• Area
• PAU: 11.00% reduced LUTs

• Divider: 57.47% reduced LUTs

17

PERCIVAL PERC PERI

PERCIVAL PERC PERI

<<

Baseline
(our work)

Evaluation – HW Acceleration

• Comparison with SW-only implementation
• expf (fdlibm)

• Ported using SW posit library

• Best case: 768 iteration
• HW acceleration: 174,360 cycles

• SW implementation: 10,477,848 cycles

HW posit

SW posit

18

Up to 60.09x performance improvement

Conclusion

1) RF2P provides flexible, area-efficient posit HW acceleration using a scalable
divider generator and square root logic.

2) Compiler optimization enables porting the SW from FP with only a few additional
workloads.

3) The Evaluation platform provides a practical method to swiftly test the posit
arithmetic.

4) Our processor can achieve up to 60.09x performance compared to SW, and the
PAU requires an 11% lower area than state-of-the-art processors in performance-
aware settings for 100 MHz operating frequency

19

Q&A

20

Thank You!
ohhyunwoo@seoultech.ac.kr

	슬라이드 1: RF2P: A Lightweight RISC Processor Optimized for Rapid Migration from IEEE-754 to Posit
	슬라이드 2: Why posit?
	슬라이드 3: Why posit?
	슬라이드 4: Challenges in applying posit
	슬라이드 5: Related Works
	슬라이드 6: Related Works
	슬라이드 7: Our Solutions
	슬라이드 8: Coprocessor & PAU architecture
	슬라이드 9: Scalable Divider
	슬라이드 10: Scalable Divider
	슬라이드 11: Square Root Logic
	슬라이드 12: Square Root Logic
	슬라이드 13: Adding Compiler Support
	슬라이드 14: Evaluation Platform
	슬라이드 15: Evaluation – Scalable Divider (FPGA)
	슬라이드 16: Evaluation – Scalable Divider (ASIC)
	슬라이드 17: Evaluation – Processor
	슬라이드 18: Evaluation – HW Acceleration
	슬라이드 19: Conclusion
	슬라이드 20: Q&A
	슬라이드 21

